DYNOMIGHT ABOUT RSS SUBSTACK

Simpson's paradox all the way down

Simpson's paradox all the way down

Updated Dec 2022

It’s hard to get into Oxford. Is it easier if your parents are rich? In 2013, The Guardian showed noticed something disturbing: Students from (expensive) independent schools were accepted more often that students from state schools.

Population Acceptance rate
Independent 28%
State 20%

Of course, a natural question to ask is, did students from independent schools have stronger applications? To check this, you can limit things to just students with strong grades (three A* grades at A-level). If you do that, the difference shrinks but doesn’t disappear.

Population Acceptance rate
Independent + great grades 50.5%
State + great grades 46.1%

What’s the deal? Do privileged kids get to go Brighton and also get lower admissions standards?

The Conversation later noticed two important facts: First, it’s much easier to get into Oxford if you apply to classics (45% accepted) rather than medicine (21%). Second, students from independent schools are much more likely to apply to classics. Even if all department admitted students at equal rates, you’d still get an appearance of overall bias if state students apply more often to more competitive majors like medicine.


This kind of situation—where the data seems to tell a different story depending on how it’s analyzed—is typically known as “Simpson’s paradox”. Typically these situations are seen as odd little curiosities, or perhaps cautionary tales about the “correct” way to interpret data.

But I think this underrates Simpson’s paradox. It’s not a little quirk. Really, it’s just the first layer of a deeper issue that may not have a solution. It’s better to think of it as a limit on what questions data can answer. So here’s a little parable about that.

Zeus

You’re a mortal shepherd living near Olympus with a flock of sheep and goats. Your neighbor Zeus has grown weary of transforming into animals to seduce love interests and, in his boredom, has taken to shooting lighting bolts at your flock.

zeus

You wonder: Is He biased in terms of shooting goats or sheep more often? You keep records for a year.

sheep v goats 1

At the end of the year, Zeus shot 12 of your 25 sheep and 13 of your 25 goats, suggesting a bias against goats. (If you’re worried about having a small sample, multiply all the numbers by a million.)

Colors

Except, maybe Zeus doesn’t care about species, and he’s biased in terms of the color of fur that the animals have. You go back and update your records to break things down that way.

sheep v goats 2

You re-do the analysis, splitting the animals into dark and light groups.

sheep v goats 3

Overall, sheep are zapped less often than goats (¹²⁄₂₅ < ¹³⁄₂₅). But dark sheep are zapped more often than dark goats (⁷⁄₁₁ > ¹⁰⁄₁₆) and light sheep are zapped more often than light goats (⁵⁄₁₄ > ³⁄₉).

Why do things reverse? Ultimately it’s pretty simple: Dark animals get zapped more often, and there are more dark goats than dark sheep. So when you ignore color, that changes the conclusion.

This is the “normal” version of Simpson’s paradox as it’s usually presented. Group-level differences can be the opposite of subgroup differences when the ratio of subgroups varies.

Seems like a weird little edge case so far, right? Let’s continue.

Stripes

Thinking more, you notice that many of your animals have stripes. So you prepare the data again, marking them according to stripes rather than color.

sheep v goats 4

You wonder, naturally, what happens if you analyze these groups.

sheep v goats 5

The results are similar to those with color. Though sheep are zapped less often than goats overall (¹²⁄₂₅ < ¹³⁄₂₅), plain sheep are zapped more often than plain goats (⁵⁄₁₄ > ³⁄₉), and striped sheep are zapped more often than striped goats (⁷⁄₁₁ > ¹⁰⁄₁₆).

Colors and stripes

But of course, you could also consider both color and stripes at the same time.

sheep v goats 6

So you analyze all four subgroups separately

sheep v goats 7

Now, sheep are zapped less often in each subgroup. Dark plain sheep are zapped less than dark plain goats (¼ < ²⁄₇), dark striped sheep are zapped less than dark striped goats (⁶⁄₇ < ⁸⁄₉), and so on.

So, to review:

Subgroups Zapped more often
All Goats
Light Sheep
Dark Sheep
Plain Sheep
Striped Sheep
Dark Plain Goats
Dark Striped Goats
Light Plain Goats
Light Striped Goats

Overall, there’s a bias against goats. That reverses to a bias against sheep if you break things down by color, or if you break things down by stripes. Yet if you break things down by color and stripes, it reverses again.

How can this happen? That has two answers, though I warn you that you might not like them.

The first answer is that it happened in this particular case because I wrote a mixed-integer linear program (MILP) that encoded “conjure me a magical double-reversing dataset into math” and then called a MILP solver that output the data above.

The second answer is that asking how this can happen is the wrong question. Instead, you should ask if there is anything to stop it from happening. The world is complex and full of wonders. There are a lot of datasets, and unless there is some special structure forcing things to be orderly, arbitrary stuff can happen. There is no special structure here. Any pattern of biases could happen for the 9 different subgroups in the above table.

Individuals

In some cases, thinking about Simpson’s paradox can help you find the right way to analyze things. Say that Prestige Airways has more delays than GreatValue Skybus, but Prestige flies mostly between snowy cities whereas Skybus mostly flies between warm dry cities. Prestige might have a better track record for all routes but a worse record overall, simply because they fly difficult routes more often. Then, maybe it’s right to say that Prestige is more reliable.

But in other cases, the lesson should be just the opposite: There is no “right” way to analyze data. Often the real world looks like this:

sheep v goats 8

There’s no clear dividing line between “dark” and “light” animals. Stripes can be dense or sparse, thick or thin, light or dark. There can be many dark spots or few light spots. This list can go on forever so every case is unique.

In these cases, you don’t beat the paradox. To get answers, you have to make arbitrary choices, even though the answers will depend on the choices you make.

Arguably this is a philosophical problem as much as a statistical one. We think about bias in terms of “groups”. If prospects vary for two “otherwise identical” individuals in two groups, there is a bias. But in a world of individuals, this definition of bias breaks down.

Say Prestige mostly flies in the middle of the day on weekends in winter, while Skybus mostly flies at night during the week in summer. They vary from these patterns, but never enough that they are flying the same route on the same day at the same time in the same season. If you want to compare the two, you can group flights by cities, or day, or time, or season, but not all of them. Different groupings (and sub-groupings) can give different results. There simply is no right answer.

This is the endpoint of Simpson’s paradox: Analyzing all the data together can be misleading, but often you can’t create subgroups without making arbitrary choices, and those choices might change the result.

All this is similar to how correlation ≠ causation and how controlling for variables often fails to reveal causal effects. Except, with Simpson’s paradox, we often don’t have the alternative of running a randomized trial even in principle—there’s no way to assign an animal to be a sheep or a goat. Fundamentally, it’s not clear what bias means when every individual is unique.

new dynomight every thursday
except when not

(or try substack or rss) ×
Please show lots of digits

as many as you're allowed to give me

Hi there. It’s me, the person who stares very hard at the numbers in the papers you write. I’ve brought you here today to ask a favor. Say you wrote something like this: There were 446 students tested. The left-handed...

Arithmetic is an underrated world-modeling technology

if you keep units

Of all the cognitive tools our ancestors left us, what’s best? Society seems to think pretty highly of arithmetic. It’s one of the first things we learn as children. So I think it’s weird that only a tiny percentage of...

Datasets that change the odds you exist

Stats for dangerous situations

It's October 1962. The Cuban missile crisis just happened, thankfully without apocalyptic nuclear war. But still: Apocalyptic nuclear war easily could have happened. Crises as serious as the Cuban missile crisis clearly aren't *that* rare, since one just happened. You...

Using axis lines for good or evil

add them only if they mean something

Say you want to plot some data. You could just plot it by itself. Or you could put lines on the left and bottom. Or you could put lines everywhere. Or you could be weird. Which is right? Many people...

Prediction market does not imply causation

Unless you're careful, conditional prediction markets have all the same problems as observational studies.

We all want to make good decisions. But it’s hard because we aren’t sure what’s going to happen. Like, say you want to know if CO₂ emissions will go up in 10 years. One of our best ideas is to...

The conspiratorial Monty Hall problem

What if you and Monty decide to cheat?

The Monty Hall problem has now been a pox on humanity for two generations, diverting perfectly good brains away from productive uses. Hoping to exacerbate this problem, some time ago I announced a new and more pernicious variant: What if...

Why ‟controlling for a variable” doesn't (usually) work

It's just adding a variable to a regression.

I’ve always seen cathedrals as presenting a kind of implicit argument to atheists. Something like: God must exist, because otherwise it would have been insane for people to build this:

Social dynamics of bluetooth speakers

A mathematical model of who turns on their bluetooth speaker at the beach.

Say you're at a park or a beach. How many people will have bluetooth speakers on? It seems to me there are three types of people: The main characters always turn on their speakers regardless of what anyone else is...

It’s perfectly valid for a trait to be more than 100% heritable

What heritability really is: A fluid statistic that changes whenever society changes.

All psychological traits are heritable. This is the best replicated finding in all of behavioral genetics. Some recent numbers include: Religiosity: 44% Schizophrenia: 79% Big five personality traits: ~40% But what, exactly, does "heritability" mean? I used to have a...

The simplest possible way to convert Celsius and Fahrenheit

If you can switch the order of two numbers, you can convert temperatures.

This is a new way to convert temperatures between Celsius and Fahrenheit. It’s not the most accurate method, but it’s surely the easiest.

Making the Monty Hall problem weirder but obvious

It's this simple: Do you want what's behind one door or the other nine?

Here’s an Obvious Problem: There are 10 doors. A car is behind a random door, goats behind the others. Do you want what’s behind door 1, or what’s behind all the other doors? That’s easy, right? Well, how about the...